
J Comput Virol (2010) 6:123–141
DOI 10.1007/s11416-008-0091-3

EICAR 2008 EXTENDED VERSION

User-mode memory scanning on 32-bit & 64-bit windows

Eric Uday Kumar

Received: 20 January 2008 / Revised: 7 June 2008 / Accepted: 15 June 2008 / Published online: 10 July 2008
© Springer-Verlag France 2008

Abstract Memory scanning is an essential component in
detecting and deactivating malware while the malware is still
active in memory. The content here is confined to user-mode
memory scanning for malware on 32-bit and 64-bit Windows
NT based systems that are memory resident and/or persistent
over reboots. Malware targeting 32-bit Windows are being
created and deployed at an alarming rate today. While there
are not many malware targeting 64-bit Windows yet, many
of the existing Win32 malware for 32-bit Windows will work
fine on 64-bit Windows due to the underlying WoW64 sub-
system. Here, we will present an approach to implement
user-mode memory scanning for Windows. This essentially
means scanning the virtual address space of all processes
in memory. In case of an infection, while the malware is
still active in memory, it can significantly limit detection and
disinfection. The real challenge hence actually lies in fully
disinfecting the machine and restoring back to its clean state.
Today’s malware apply complex anti-disinfection techniques
making the task of restoring the machine to a clean state extre-
mely difficult. Here, we will discuss some of these techniques
with examples from real-world malware scenarios. Practical
approaches for user-mode disinfection will be presented. By
leveraging the abundance of redundant information available
via various Win32 and Native API from user-mode, certain
techniques to detect hidden processes will also be presented.
Certain challenges in porting the memory scanner to 64-bit
Windows and Vista will be discussed. The advantages and
disadvantages of implementing a memory scanner in user-
mode (rather than kernel-mode) will also be discussed.

E. U. Kumar (B)
Authentium Inc., 7121 Fairway Drive, Suite 102,
Palm Beach Gardens, FL 33418, USA
e-mail: ekumar@authentium.com

1 Introduction

Computer malware targeting Microsoft’s Windows operating
system has been constantly evolving in order to remain steal-
thier, while still being effective in its attack. More and more
complex malware are rapidly being generated and deployed
each day [14]. Powered with automated malware genera-
tion tools and customized server side encryption/packing,
the widely spread malware authors have plagued computer
users [25]. The biggest challenge that the anti-malware indus-
try has to face today is the sheer quantity of malware being
generated on a daily basis [2]. The shift in intent of malware
authors toward monitory gain has furthered the creation of
stealthier and more subtle malware. This has resulted in mal-
ware that apply complex techniques to disallow detection and
more so, disinfection.

Today’s Windows based malware apply complex methods
of anti-disinfection such as:

• Protecting its associated files on disk by disallowing
access to any external program, such as an on-demand
or on-access scanner.

• Protecting itself and its associated processes in memory
from being terminated by using multi thread/process
monitoring.

• Running as a SYSTEM process or native service to thwart
termination.

• Monitoring its registry entries to thwart deletion.
• Injecting code (such as a dynamic link library) within

system processes such as winlogon.exe, explorer.exe, ser-
vices.exe, lsass.exe, etc.

• Patching system files.
• Hiding its associated processes in memory and/or files on

disk by patching user-mode APIs, native APIs, or kernel
data structures.

123

124 E. U. Kumar

• Applying offensive techniques such as lowering system
security and making it vulnerable for further attacks as
well as terminating security applications.

Hence, while the malware and/or its components are still
active in memory, it makes the task of disinfecting and res-
toring the machine to a clean state significantly harder. It
is imperative that an anti-malware system for the Windows
OS has a good implementation of both user-mode and kernel-
mode memory scanning. A user-mode memory scanner
purely operates in user-mode and can only access the user-
space virtual memory with the privileges of the currently
logged-on user. A kernel-mode memory scanner operates in
kernel-mode and can access complete user-space and kernel-
space virtual memory with the highest privileges. The dis-
cussion here is confined to user-mode memory scanning.

Implementing a user-mode memory scanner for Windows
NT based systems involves the usage of several user-mode
Win32 APIs and native APIs. These APIs allow enumeration
of loaded modules and device drivers, as well as actively run-
ning processes and threads. Using these APIs, the user-mode
memory scanner would take advantage of as much redun-
dant information that is made available by the operating sys-
tem and accessible from user-mode. This involves retrieving
information such as enumeration of all active processes, pro-
cess heaps, threads, device drivers, and loaded modules (such
as DLLs). The idea behind obtaining redundant information
using several methods (essentially from several different data
structures maintained by the operating system), is to be able
to “see” these memory components, least they may have been
hidden by a malware using any of the several bypassing tech-
niques. For example, the malware may have hooked a few of
the user-mode APIs or native APIs that are used for enume-
ration, but may have overlooked bypassing some of the other
APIs also used for enumeration. In this case, we will have a
good chance of discovering the hidden malware components.

The following sections discuss related work and back-
ground information that is useful to understand memory
scanning on Windows. This is followed by a discussion of
enumeration techniques, disinfection techniques and an
approach to combine these techniques in order to obtain use-
ful data for memory scanning. The paper is concluded with
a brief discussion about the pros and cons of implementing
a memory scanner in user-mode.

2 Related work

A reliable published work related to memory scanning on 32-
bit Windows NT based systems is by Ször [27]. The paper
explains implementation of both user-mode and kernel-mode
memory scanner, weighing in on the advantages of imple-
menting memory scanning in kernel-mode. Several issues

with real world malware detection and disinfection were also
presented.

3 Background: Windows NT based operating systems

Microsoft’s first 32-bit operating system, Windows NT 3.1,
comprised of micro-kernel architecture, memory protection,
pre-emptive multitasking scheduler, backward compatibility
with 16-bit versions of Windows and Win32 API, and Win-
dows NT File System (NTFS). With the release of Windows
NT 4.0 in 1996, several major improvements were introdu-
ced in terms of efficiency, speed, reliability, scalability and
security. Examples of today’s Windows NT based operating
systems are Windows 2000, Windows XP, Windows Server
2003, and Windows Vista, to name a few. These are all based
on the same core as the Windows NT 4.0, but with newer
enhancements that exploit advanced features of modern pro-
cessor architectures. The Windows NT kernel is not a pure
microkernel but rather a hybrid kernel that combines aspects
of both microkernel and monolithic kernel architectures. This
allows for most of the core kernel code to share the same
memory address space. Although this improves efficiency,
a pit-fall to this is that other kernel components (such as
third party device drivers) could potentially compromise the
integrity of the kernel. All discussions in this paper pertain
to Windows operating systems that are based on the core
Windows NT kernel.

3.1 Processes and threads

A process can be described to consist of the following essen-
tial components [26, pp. 4–5]:

• A process ID, which uniquely identifies the process.
• An access token, which uniquely identifies the owner,

security groups, and privileges associated with the pro-
cess.

• A private virtual address space, reserved by the operating
system.

• Executable program (code and data) mapped into the pro-
cess’ virtual address space.

• At least one thread of execution.
• A list of open handles to resources allocated by the ope-

rating system that can be accessed by any thread in the
process.

• Information about resources the system has allocated for
it, such as files, shared memory sections, and synchroni-
zation objects.

A thread can be described to consist of the following essential
components [26,pp. 4–5]:

123

User-mode memory scanning on 32-bit & 64-bit windows 125

• A thread ID, which uniquely identifies the thread.
• An access token, which uniquely identifies the owner,

security groups, and privileges associated with the thread.
• A thread-local storage (TLS), which is a private storage

area that can be used by subsystems, run-time libraries,
and DLLs.

• Two separate stacks to use while the thread is running in
user-mode and kernel-mode.

• The contents of CPU registers that represent the state of
the CPU.

The context of a thread is defined by the contents of the
CPU registers, the stacks, and the TLS. These hold all the
information that is required to continue running the thread
after a context switch. Every thread running inside a pro-
cess has their own context but they share the process’ virtual
address space and resources. Hence, any thread in a pro-
cess can access the memory and handles of any other thread
running inside the same process. However, threads are not
allowed to access the virtual address space of any other pro-
cess, unless the other process specifically makes available
some of its virtual address space as a file-mapping object.

3.2 Separation of kernel-mode and user-mode

The Windows NT based architecture clearly separates the
user-mode code (ring 3) from the underlying kernel-mode
code (ring 0). These two modes are part of the processor’s
hardware state. On x86 processors, this “memory access
mode” is known as the IO privilege level (IOPL). Hence
kernel-mode is IOPL 0 (ring 0) and user-mode is IOPL 3 (ring
3). This is to keep any buggy or malicious user-mode appli-
cations from crashing or compromising the kernel. User-
mode applications are less privileged and access the system’s
resources like registry, file system, memory etc. via the Win32
API. Kernel-mode is the mode of execution in the processor
that grants access to entire system memory and all the pro-
cessor’s instructions. The Windows NT architecture provides
extensibility of its kernel functionality by allowing device
drivers to load in the kernel. Windows will tag memory pages
specifying which mode is required to access the memory,
but Windows does not protect memory in kernel-mode from
other threads running in kernel-mode. Windows only sup-
ports these two modes of execution today, although Intel and
AMD CPUs actually support four privilege modes (or rings)
in their chips to protect system code and data from being
overwritten or corrupted by code of lesser privilege.

The Windows subsystem includes the Win32 subsystem
service process (csrss.exe), the subsystem API library (e.g.
kernel32.dll, advapi32.dll, gdi32.dll, and ntdll.dll), fixed pro-
cesses (winlogon.exe and smss.exe), the RPC subsystem
(rpcss.exe), the local security authority subsystem (lsass.exe),
and service processes that run independent of user logons

(example: task scheduler and spooler service). Note that
smss.exe is the only “parentless process” as it is spawned by
the INIT routine in ntoskrnl.exe. Windows implements the
Win32 subsystem as Dynamic Link Libraries (DLLs). This
provides an Application Programming Interface (API) to the
system services that reside in kernel memory. By using this
API, application developers can write software that will sur-
vive most operating system upgrades. Usually, these appli-
cations do not call the Windows system services directly;
instead, they go through one of these implemented APIs.

When an application in user-mode requests a system ser-
vice, it usually involves invoking the Win32 APIs exported
by any of the Win32 subsystem DLLs. These APIs may then
make a call to any of the native API functions in ntdll.dll. The
native API function then invokes the corresponding system
service either by executing the software interrupt ‘int 0x2e’
or the SYSENTER instruction, depending on the version of
Windows NT kernel. In Windows 2000 and earlier versions
of NT based operating systems, software interrupts are used
to call the kernel-mode code. When an interrupt occurs, the
CPU checks the Interrupt Descriptor Table (IDT) to deter-
mine what function should handle that event and then exe-
cutes that function. The “System Service Dispatcher” (also
known as KiSystemService), is the code responsible for hand-
ling system service calls. In Windows XP and newer versions
of NT based operating systems, the mechanism involved in
invoking KiSystemService is different. In these operating sys-
tems, the user-mode native API function in ntdll.dll directly
executes the SYSENTER instruction which is provided by
the CPU’s instruction set to facilitate direct execution of a
system service. On execution of this instruction the CPU
checks the model-specific register IA32_SYSENTER_EIP
(for Intel 32-bit processors) where the address of KiSystem-
Service is stored. The value of this register is loaded into the
instruction pointer and the dispatcher executes. The job of
KiSystemService is to determine the requested system ser-
vice and execute it. This it does by looking up an offset in the
System Service Dispatch Table (or System Service Descrip-
tor Table, SSDT) for the address of the requested service. The
SSDT contains addresses of all system services available on
the system. The dispatcher gets the address of the requested
kernel-mode function (which is implemented in ntoskrnl.exe)
and then calls it. Note that, before the user-mode thread is
allowed to enter the kernel in order to service the request, its
context is switched from user-mode to kernel-mode. When
the thread returns back from kernel-mode to user-mode with
the results, its context is switched back to user-mode.

Some of the executing components in user-mode are: user
applications, service processes and system support processes.
User applications are custom user-executed programs that are
not part of the operating system. Service processes execute
Win32 services, such as the Workstation and Server services
that can be configured to start automatically or manually and

123

126 E. U. Kumar

their execution is controlled by the service control manager
(SCM). System support processes are loaded by the opera-
ting system but are not started by the SCM. Examples of
such processes are the Logon process (winlogon.exe), Ses-
sion manager (smss.exe), and the SCM (services.exe).

3.3 Virtual memory

Windows NT allocates each process its own virtual address
space. This virtual memory is a logical view of the actual phy-
sical memory. The memory manager (software component),
with assistance from hardware (CPU feature), maps the vir-
tual addresses at run time to corresponding physical addresses
[13,22]. Parts of virtual memory belonging to each process
are “paged out” to a file on disk called the pagefile. When
a paged virtual address is referenced, the memory manager
loads the data back into physical memory from disk.

On 32-bit Windows NT based operating systems, the vir-
tual memory system is based on a flat 32-bit address space,
which allows each process to “see” a total of 4 GB of pri-
vate virtual memory. The address space layout consists of
the following four regions [26,pp. 420–428]:

• 0x00000000 to 0x0000FFFF: No-access region to aid
programmers.

• 0x00010000 to 0x7FFEFFFF: Process’ private address
space.

• 0x7FFF0000 to 0x7FFFFFFF: No-access region that pre-
vents threads from passing buffers across the user/system
space boundary.

• 0x80000000 to 0xFFFFFFFF: System addresses space
where the Windows executive, kernel, and device drivers
are loaded. Only kernel-mode processes have the privi-
lege to manipulate this portion of memory.

Usually the system address range begins at 0x80000000.
However, it is not right to assume this because of the abi-
lity to boot Windows with the/3 GB boot.ini switch. In order
to determine the correct system address range start address,
we can use the native API call to NtQuerySystemInforma-
tion (exported by ntdll.dll) with the SystemInformationClass
parameter set to SystemRangeStartInformation sub-function
(whose information class number is 50).

3.3.1 Extended virtual addressing for x86 (32-bit
addressing mode)

The Windows 32-bit server operating systems support the
following extended virtual addressing options suitable for
large Intel machines with 4 GB or more of RAM.

(a) Application Memory Tuning (/3 GB boot switch), which
allows user address range to grow to a maximum of

3 GB while shrinking the system address space to 1 GB.
Only applications compiled and linked with the /LAR-
GEADDRESSAWARE compiler switch (that defines
IMAGE_FILE_LARGE_ADDRESS_AWARE in the
image header) can allocate a private address space lar-
ger than 2 GB. If the /3 GB switch is used, the maximum
RAM addressable by any Windows version is 16 GB.

(b) Physical Address Extension (PAE), which provides sup-
port for 36-bit real addresses on Intel Xeon 32-bit pro-
cessors allowing them to address as much as 64 GB of
RAM, i.e. 32 bit virtual addresses can be mapped into
RAM pages above the 4 GB boundary. This hardware
feature is supported by Windows NT, 2000, XP, 2003
and later. This feature is activated by using the /PAE
switch in the boot.ini file, but can also be automatically
enabled if the processor supports hardware data exe-
cution prevention (DEP). This feature does not change
the size of the virtual address space, but allows for more
processes to be resident in RAM, thus reducing paging.

(c) Address windowing extensions (AWE), are API calls
which permit 32-bit process address spaces access to
real addresses above their 4 GB virtual address limita-
tions. Usually, AWE is used by applications in conjunc-
tion with PAE to extend their addressing range beyond
32-bits. Note that the size of the virtual address space
is not changed but different RAM pages are mapped
into application specified virtual addresses. The appli-
cation program has to be specifically designed to use
this feature.

3.3.2 Memory management on 32-bit and 64-bit Windows

The total number of addresses available in virtual memory is
determined by the width of the registers in the CPU. The bit
size of a processor refers to the size of the address space it can
reference. A 32-bit processor can reference 232 bytes, or 4 GB
of memory (in flat addressing mode). 64-bit processors are
theoretically capable of referencing 264 locations in memory,
or 16 EB (exa-bytes), which is more than 4 billion times the
number of memory locations 32-bit processors can reference.
However, all 64-bit versions of Microsoft operating systems
currently impose a 16 TB limit on address space (addressing
limit of 44 bits out of the available 64-bits) and allow no more
than 128 GB of physical memory due to the impracticality of
having 16 TB of RAM. Note that the AMD 64-bit proces-
sors implement a virtual address space of 48-bits (256TB),
while the Intel Itanium2 64-bit processors implement a vir-
tual address space of the full 64-bits (16EB) [23]. Processes
created on 64-bit version of Windows are allotted 8 TB of
user address space and 8 TB of kernel address space, with
4 GB virtual address space added for 32-bit “large address
space aware” applications. Hence, the previously mentioned

123

User-mode memory scanning on 32-bit & 64-bit windows 127

extended virtual addressing are no longer needed with 64-bit
Windows operating systems running on 64-bit hardware.

On 64-bit Windows operating systems, 32-bit processes
are simply separate 64-bit processes with a special thunking
layer that sets up an environment in which 32-bit applications
are run. This layer is called “Wow64”, short for “Win32 on
Windows 64”. A 32-bit application can detect whether it is
running under WoW64 by calling the IsWow64Process func-
tion. The WoW64 emulator consists of the following DLLs:

• Wow64.dll provides thunks for the ntoskrnl.exe entry-
point functions.

• Wow64Win.dll provides thunks for the win32k.sys entry-
point functions.

• Wow64Cpu.dll provides x86 instruction emulation on
Intel Itanium processors. This DLL is not necessary for
AMD x64 processors because they execute x86-32 ins-
tructions at full clock speed.

Along with the 64-bit version of ntdll.dll, these are the only
64-bit binaries that can be loaded into a 32-bit process. Note
that 32-bit processes cannot load 64-bit DLLs (except for the
ones mentioned above), and 64-bit processes cannot load any
32-bit DLLs. The Win32 API functions CreateProcess and
ShellExecute can launch 32-bit and 64-bit processes from
either 32-bit or 64-bit processes. Also, 64-bit Windows ope-
rating systems (such as Windows Vista x64 Edition), will
only install on 64-bit hardware, while the 32-bit versions
(such as x86 edition of Windows Vista) can run on 64-bit
hardware as a 32-bit operating systems. Architectural limits
for 32-bit and 64-bit Windows virtual memory can be found
in [18], while maximum RAM support by 32-bit and 64-bit
editions of Windows can be found in [16].

4 Enumerating objects in memory

There are several Win32 and Native APIs that help enu-
merate processes, process heaps, threads, loaded modules,
and device drivers in user-mode. Windows 9x/ME and 2000
provide a built-in implementation (i.e. implemented by ker-
nel32.dll) of Tool Help Library. On the other hand Win-
dows NT uses, for the same purpose, the PSAPI library.
There are also tools available that use these methods such
as Userdump.exe which is part of the OEM Support Tools
for Windows and is a user-mode process dumper and viewer.
The use of Win32 native APIs, although not recommended by
Microsoft, can be extremely useful while enumerating these
objects in memory. Following are the different methods (or
functions) that can be adopted to enumerate various objects
in memory:

• PSAPI functions (psapi.dll)—can be used to enumerate
processes, modules (such as dynamically or statically loa-
ded DLLs by a process) and device drivers.

• Tool Help Library (kernel32.dll)—can be used to enume-
rate processes, threads, modules, and heaps.

• ADVAPI function (advapi32.dll)—can be used to enu-
merate services installed via the SCM (Service Control
Manager).

• Performance Counters (pdh.dll)—can be used to enume-
rate processes and threads.

• Windows Management Instrumentation (WMI)—can be
used to enumerate processes.

• Terminal server functions (Wtsapi32.dll)—can be used to
enumerate processes on a terminal server.

• NTVDM sub-system functions (vdmdbg.dll)—can be
used to enumerate 16-bit processes (or tasks) within each
instance of ntvdm.exe.

• The native API NTQuerySystemInformation (ntdll.dll)—
can be used to enumerate processes, threads and esta-
blishing parent-child process relations. These relations
assist in terminating malicious processes that spawn mul-
tiple child processes.

• The native API NtQueryInformationProcess (ntdll.dll)—
can be used to enumerate process modules and heaps
within a process. It can also be used to establish parent-
child process relations. This function also allows access
to the PEB (Process Environment Block) of a process.

• The native API NtQueryInformationThread (ntdll.dll)—
can be used to enumerate threads within a process. This
function also allows access to the TEB (Thread Environ-
ment Block) of a thread, which in turn can be used to
access the PEB of the process it belongs to.

• The native API RtlQueryProcessDebugInformation
(ntdll.dll)—can be used to enumerate loaded modules and
heaps within a process.

• The native API NTQuerySystemInformation (ntdll.dll) in
combination with NtQueryObject (ntdll.dll)—can be used
to enumerate open handles system wide.

• Using direct read of kernel memory from user-mode by
exploiting read access and granting write access to the
\\Device\\PhysicalMemory section object—can be used
to enumerate processes and loaded modules.

A brief discussion of the use of each of these functions
follows.

4.1 Enumeration using NTQuerySystemInformation native
API

The Win32 API layer is a high-level interface to a subsys-
tem built on top of the native API layer. Although a Win32
application can directly access the native API, this is not offi-
cially supported by Microsoft’s developer tools. Access to the

123

128 E. U. Kumar

native API is possible due to the system component ntdll.dll.
This DLL allows us to call a subset of the functions exported
by the kernel module ntoskrnl.exe from a user-mode appli-
cation. The functions exported by ntdll.dll are runtime func-
tions (executed entirely in user-mode), and kernel function
wrappers (that perform a switch from user-mode to kernel-
mode and back). In order to call the exported functions in
ntdll.dll it is imperative that we also have the import library
ntdll.lib which is included with the Platform SDK. Hence,
in order to interface with ntdll.dll, we need to write a hea-
der file that doesn’t conflict with the Platform SDK header
files, and contains just enough definitions (such as constant,
type and prototype function definitions) to call the desired
ntdll.dll functions. We also need to import ntdll.lib by means
of a linker directive in the header file.

While there are the Nt* family of native APIs, there are
also the Zw* family of native APIs with the same names,
except for the different prefix. If called from a user-mode
application, both these families of APIs point to the same
location, and essentially take the same execution path. This
is not true in case of kernel-mode though, i.e. each of these
families of APIs when called from kernel-mode traverse dif-
ferent execution paths [30].

The prototype for NtQuerySystemInformation is as shown:

NTSTATUS NTAPI NtQuerySystemInformation(
__in SYSTEM_INFORMATION_CLASS

SystemInformationClass,
__out PVOID SystemInformation,
__in DWORD SystemInformationLength,
__out_opt PDWORD ReturnLength);

SystemInformationClass selects the sub-function to be called
i.e. the type of information to retrieve. We are interested in the
SystemProcessAndThreadInformation sub-function (whose
information class number is 5). Many of thee sub-functions
are merely wrappers around the internal ntoskrnl.exe func-
tions; and in this case the base function is ExpGetProcess-
Information. SystemInformation is a pointer to a buffer that
receives the requested information, and SystemInformation-
Length is the size of the receiving buffer. The optional Return-
Length argument indicates how many bytes were copied to
the buffer. The required size of the buffer depends on the sub-
function being called and hence requires us to call NtQue-
rySystemInformation within a loop and check for the return
code STATUS_INFO_LENGTH_MISMATCH, while dyna-
mically increasing the buffer size until a return code of
STATUS_SUCCESS is received. The SystemProcessAnd
ThreadInformation sub-function returns an array of
SYSTEM_PROCESS_INFORMATION structures that
contain information about each process in memory.
Each of these process structures contains an array of fixed-
length thread structures called the SYSTEM_THREAD_
INFORMATION. Because the length of each process struc-

ture varies with the number of threads the corresponding
process hosts, the process structures are linked by a mem-
ber that indicates how many bytes need to be skipped to get
to the next list item. Other important members of the pro-
cess structure are thread-count, handle-count, process-name,
process-id and parent process-id. Important members of the
thread structure are start-address, thread-id and process-id.
Similarly, in order to obtain a list of all loaded drivers using,
we pass in the SystemInformationClass parameter as System-
ModuleInformation sub-function (whose information class
number is 11). Sample code can be found in [8,9,24]. The
use of native APIs is not recommended by Microsoft since
associated internal structures could change from one version
of Windows to other.

4.2 Enumeration using PSAPI functions

The process status application programming interface
(PSAPI) is a helper library that provides functions to obtain
information about processes and device drivers. These func-
tions are available in psapi.dll. It is preferred to link with
psapi.dll dynamically by loading the library with LoadLi-
brary and then obtaining addresses of necessary functions
using GetProcAddress. The functions required for
enumeration are: EnumProcesses, EnumProcessModules,
GetModuleFileNameEx, EnumDeviceDrivers, GetDevice
DriverFileName.

The EnumProcesses function returns an array of process
identifiers (PIDs) for all running processes. The size of the
buffer required to hold all PIDs is allocated dynamically in
an incremental manner by calling EnumProcesses within a
loop and checking for the return code of ERROR_NOT_
ENOUGH_MEMORY. After retrieving the list of process
identifiers, each PID can be used with the OpenProcess func-
tion in order to obtain a handle to the process. OpenProcess
is to be called with PROCESS_QUERY_INFORMATION|
PROCESS_VM_READ access rights. OpenProcess does not
allow obtaining a handle to The “System Idle” Process or the
“System” Process and fails with ERROR_ACCESS_
DENIED error. Certain processes that run with higher privi-
leges (such as CSRSS.EXE that runs as a SYSTEM process)
have a security descriptor set that doesn’t allow opening the
process with necessary access rights. This issue can be resol-
ved by enabling the SeDebugPrivilege (i.e. SE_DEBUG_
NAME privilege) for the enumerating process. With this
privilege turned on, the calling thread can open process
handles with any access rights (PROCESS_ALL_ACCESS)
regardless of the security descriptor assigned to a process.
This privilege is granted only to users belonging to the Admi-
nistrator group.

The process handle can then be passed to EnumProcess-
Modules which retrieves a list of module handles that were

123

User-mode memory scanning on 32-bit & 64-bit windows 129

loaded into the processes’ address space. The first module in
the list is always the executable file used to create the process.
Each module handle can then be passed to GetModuleFile-
NameEx to obtain complete path to the file on disk associated
with the loaded module. In order to obtain additional infor-
mation of a loaded module, use the GetModuleInformation
function. This function takes a process handle and a module
handle and returns a MODULEINFO structure with the load
address of the module, the size of the linear address space it
occupies, and a pointer to its entry point. Sample code can
be found in [8].

On 64-bit Windows NT based operating systems, if Enum-
ProcessModules is called from a 32-bit application running
under WoW64 (x86 emulator for 64-bit), it can only enume-
rate the modules of a 32-bit process. If enumeration were to
be implemented via a 64-bit application then it is better to
use the EnumProcessModulesEx function which allows for
better filtering of results. The filter criteria can be set to one of
the following values: LIST_MODULES_32BIT (in order to
list the 32-bit modules), LIST_MODULES_64BIT (in order
to list the 64-bit modules), and LIST_MODULES_ALL (in
order to list all modules). If this function is called by a 32-bit
application running under WoW64, the filter flag option is
ignored.

Using PSAPI library functions we can enumerate device
drivers as well. The Windows Driver Foundation (WDF)
defines a single driver model that is supported by two frame-
works: a user-mode driver framework (UMDF) and a kernel-
mode driver framework (KMDF). User-mode drivers do not
have access to the kernel-mode address space and there-
fore cannot compromise the integrity of the kernel. These
drivers run in a driver host process, which runs with the
security credentials of a LocalService account, although the
host process itself is not a Windows service. Thus, user-
mode drivers are as secure as any other user-mode service.
Native drivers on Windows 2000 and later run in user
mode.

Modules within device drivers are global to the system. We
can use the EnumDeviceDrivers function in order to retrieve
the load address for each device driver. We can then use
the GetDeviceDriverFileName function that takes the load
address and returns the complete path to the device driver.
On 64-bit Windows NT based operating systems, EnumDevi-
ceDrivers fails if called from within a 32-bit application, and
will only succeed if called from within a 64-bit application.
Note that 32-bit driver support has been removed in 64-bit
Windows Vista.

The PSAPI enumeration functions ultimately call the
native API NtQuerySystemInformation (implemented in
ntdll.dll). Hence, a malware that hooks this native API (using
any of the user-mode or kernel-mode hooking techniques)
can easily bypass enumeration via PSAPI functions.

4.3 Enumeration using tool help library

The tool help library functions provide the ability to take a
snapshot (a read-only copy) of the current state of processes,
threads, modules, and heaps that reside in system memory.
The tool help functions are implemented in kernel32.dll,
while the structure definitions are defined in tlhelp32.h. In
order to take a snapshot of the system memory, the Create-
Toolhelp32Snapshot function can be used. One or more of the
following values can be specified when calling this function:

• TH32CS_SNAPHEAPLIST—includes the heap list of the
specified process

• TH32CS_SNAPMODULE—includes the module list of
the specified process

• TH32CS_SNAPPROCESS—includes the list of all run-
ning processes in memory

• TH32CS_SNAPTHREAD—includes the list of all active
threads in memory

In order to enumerate all of these, we can specify the
TH32CS_SNAPALL value. Note that the function call fails
if we try to retrieve information for a 64-bit process from
within a 32-bit process. Sample code can be found in [8].

To enumerate heap nodes of a particular process, we can
use the Heap32ListFirst and Heap32ListNext functions with
a handle to the processes’ snapshot. Both these functions fill
a HEAPLIST32 structure which contains the process-id and
heap-id as its members. Blocks within the heap nodes can
be enumerated by using the Heap32First and Heap32Next
functions. Both these functions fill a HEAPENTRY32 struc-
ture with information for the appropriate block of a heap such
as start address and size of the heap block. This information
could be used to read the contents of each heap block into a
buffer (using the ReadProcessMemory function) and scanned
by the memory scanner.

To enumerate modules loaded by a particular process, we
can use the Module32First and Module32Next functions with
a handle to the processes’ snapshot. Both these functions fill
a MODULEENTRY32 structure. The important members of
this structure are:

• The process-id of the process whose modules are being
examined.

• A handle to the module in the context of the owning pro-
cess.

• The base address of the module in the context of the
owning process.

• The size of the module, in bytes.
• The module name.
• The module path.

123

130 E. U. Kumar

This information could again be used to read the memory
contents of each loaded module into a buffer (using the Read-
ProcessMemory function) and scanned using the memory
scanner.

On 64-bit Windows NT based operating systems, using
the CreateToolhelp32Snapshot function in a 32-bit applica-
tion to retrieve module information will only include 32-
bit modules, while using it in a 64-bit application will only
include 64-bit modules. This can be overcome by using the
TH32CS_SNAPMODULE32 flag which includes all 32-bit
modules when run on 64-bit Windows.

To enumerate all active processes in memory, we can use
the Process32First and Process32Next functions. Both these
functions fill a PROCESSENTRY32 structure, which holds
information about the executable file, such as the process-
id of its corresponding process, and the process-id of the
parent process. These process-ids can be used to establish
parent-child relationships between different processes which
are helpful while terminating a parent malicious process and
all its malicious child processes. The memory contents of a
specific process can be read into a buffer (using the Tool-
help32ReadProcessMemory function or the combination of
VirtualQueryEx and ReadProcessMemory functions) and
scanned using the memory scanner.

To enumerate all active threads in the system user space,
we can use the Thread32First and Thread32Next functions.
Both these functions fill the THREADENTRY32 structure.
Two important pieces of information retrieved are the thread-
id and the process-id of the process that created that thread.
The thread-id and process-id can be passed on to OpenThread
and OpenProcess functions respectively in order to obtain
a handle to each. The process handle in particular can be
used with the following functions to retrieve more informa-
tion: GetProcessImageFileName, GetModuleFileNameEx,
QueryFullProcessImageName.

The GetProcessImageFileName function requires a
handle to the process which must at least have the PROCESS_
QUERY_INFORMATION access right and returns the name
of the executable file for the specified process. The full path
to the executable file is in device form, rather than drive let-
ters. The device form name can be converted to a drive letter
by using the GetLogicalDriveStrings and QueryDosDevice
functions.

The GetModuleFileNameEx function requires a handle to
the module and a handle to the process which must at least
have the PROCESS_QUERY_INFORMATION and PRO-
CESS_VM_READ access rights. It returns the fully-qualified
path for the file containing the specified module. If the handle
to the module parameter is NULL, then this function returns
the fully-qualified path to the file associated with the process
for which the handle has been specified.

The QueryFullProcessImageName function can be used
to retrieve the full name of an executable image for both

32-bit and 64-bit processes from within a 32-bit process.
This function is present only in Windows Vista and Win-
dows Server 2008. It requires a handle to the process which
must at least have the PROCESS_QUERY_INFORMATION
or PROCESS_QUERY_LIMITED_INFORMATION access
rights.

Note that the tool help library functions are similar to the
PSAPI enumeration functions in that they too ultimately call
the native API NtQuerySystemInformation (implemented in
ntdll.dll). Hence, a malware that hooks this native API (using
any of the user-mode or kernel-mode hooking techniques)
can easily bypass enumeration via tool help library functions
as well.

4.4 Enumeration using performance counters

The Windows NT based operating systems provide interfaces
in order to obtain system information in the form of perfor-
mance counters. There are two interfaces for this purpose,
namely, the registry interface and the PDH (Performance
Data Helper) interface. The PDH interface is essentially a
higher-level abstraction of the functionality that the registry
interface provides and is much easier to use than the registry
interface. It was introduced in Windows NT 4.0 as a redistri-
butable in the Microsoft Platform SDK and later became part
of the system since Windows 2000. The PDH functions are
made available via pdh.dll. Performance data can be collected
from either real-time sources or log files. For our purpose of
enumerating processes we will use the real-time sources. The
performance monitoring architecture defines several objects.
Each object can have one or more instances. Each of these
instances is associated with a set of performance counters.
For our purpose, we would want to enumerate all instances of
the object named “Process”, “Thread” and “Process Address
Space”.

The “Process” performance object consists of counters
that monitor running application programs and system pro-
cesses. The counters we are interested in are: “Creating Pro-
cess ID”—that shows the identifier of the process that created
a process, and “ID Process”—that shows the unique identi-
fier of a process. Note that a “Creating Process ID” counter
may no longer identify a running process since the creating
process might have terminated after it has created a process.
On the other hand, the “ID Process” numbers are reused and
only identify a process for the lifetime of that process.

The “Thread” performance object consists of counters that
measure aspects of thread behaviour. The counters we are
interested in are: “ID Process”—that shows the unique iden-
tifier of a process, “ID Thread”—that shows the unique iden-
tifier of a thread, “Start Address”—that shows the starting
virtual address for a thread, and “Thread State”—that shows
the current state of a thread. Just as “ID Process”, the “ID
Thread” numbers are reused, so they only identify a thread

123

User-mode memory scanning on 32-bit & 64-bit windows 131

for the lifetime of that thread. The “Thread State” values can
be any of: 0 (initialized), 1 (ready), 2 (running), 3 (standby),
4 (terminated), 5 (waiting), 6 (transition), and 7 (unknown).

The “Process Address Space” performance object consists
of counters that monitor memory allocation and use for a
selected process. The counter we are interested in is: “ID
Process”—that shows the unique identifier of a process. This
counter is considered “costly”, meaning that it takes a long
time to collect data from them.

In order to enumerate processes and threads using per-
formance counters, we can use the PdhEnumObjectItems
function. This function requires as arguments the object to
enumerate (which could be the “Process”, “Thread” or “Pro-
cess Address Space” objects), and two buffers (along with
their sizes) that would hold the counter list and instance list.
In order to determine the required buffer sizes, we have to
call the PdhEnumObjectItems function once with the buf-
fers pointing to NULL and sizes zero, then check for the
return code of PDH_MORE_DATA that will populate the
sizes parameters with the required sizes for these buffers.
Then allocate the buffer sizes and call PdhEnumObjectItems
again in order to enumerate processes or threads. The enu-
merations are stored in the instance list. This function also
takes a parameter called “data source” which can be speci-
fied as NULL to denote collecting of real time data instead of
from a log file. Another parameter it takes is called “machine
name” which can also be specified as NULL to denote enu-
meration on local machine. Consecutive calls to this function
will return identical lists of counters and instances. In order to
refresh the list of performance objects, we can use the PdhE-
numObjects function, with one of its parameters, which is a
“refresh flag”, set to TRUE, before calling PdhEnumObjec-
tItems again.

Another method using PDH functions to enumerate pro-
cesses and threads involves the following steps (Fedotov,
2006a):

• Create a query using the PdhOpenQuery function
• Add a counter to the query using the PdhAddCounter

function
• Collect the performance data using the PdhCollectQue-

ryData function
• Display the performance data using the PdhGetRaw

CounterArray function
• Close the query using the PdhCloseQuery function

Before we open a query and add a counter to it, we have to
note that object names and performance counter names are
localizable. This means for a non-English version of Win-
dows NT based operating system, process object and process
identifier counters are no longer called “Process” and “ID
Process”, but rather localized names are used. In order to get
the localized names and format a full path to the performance

counter, we have to use the following additional functions:
PdhLookupPerfNameByIndex, PdhMakeCounterPath.

The PdhLookupPerfNameByIndex function requires the
index of the performance object or counter to be looked up
by name. Here are a few example indices on English language
systems: index 230 is “Process”, index 238 is “Processor”,
index 6 is “% Processor Time”, and index 784 is “ID Pro-
cess”. We call this function twice, once in order to get the
required buffer size, and the second time to get the data. This
is done by checking for return code PDH_MORE_DATA
or PDH_INSUFFICIENT_BUFFER. These localized values
are set in the PDH_COUNTER_PATH_ELEMENTS struc-
ture, along with some other members, and passed onto the
PdhMakeCounterPath function. Again, this function is cal-
led twice, once in order to get the required buffer size, and
the second time to get the data (counter name). We can now
open a query using the PdhOpenQuery function and add the
obtained counter name to the query using the PdhAddCoun-
ter function, which returns a handle to the counter. Then use
the PdhCollectQueryData or PdhCollectQueryDataEx func-
tions to collect the query data. These functions signal the
application-defined event and wait the specified time inter-
val before returning. The next step is to call the PdhGetRaw-
CounterArray function that returns an array of raw values
from the specified counter. This function requires a handle to
the counter (which was previously obtained via the PdhAdd-
Counter function), for which current raw instance values are
to be retrieved. Again, this function is called twice, once in
order to get the required buffer size, and the second time to get
the data. The data for the counter is locked for the duration of
the call to PdhGetRawCounterArray in order to prevent any
changes during processing of the call. This function returns
the number of raw counter values and populates an out-
put buffer with an array of PDH_RAW_COUNTER_ITEM
structures for each counter. Each structure contains the ins-
tance name (which in our case would correspond to the pro-
cess name) and raw value for a single counter. The raw value
itself is a structure of type PDH_RAW_COUNTER which
contains an important member called FirstValue, which in
our case would correspond to the process-id. Note that this is
the only method that allows enumerating processes on ano-
ther machine, for which we have to set the machine name in
the PDH_COUNTER_PATH_ELEMENTS structure before
passing it the PdhMakeCounterPath function.

The advantage of using these APIs is that it provides a dif-
ferent view to obtain the list of active processes and threads.
This information is maintained and retrieved from a different
set of data structures than the ones used by the previously dis-
cussed methods. The disadvantage is that there are no PDH
APIs to enumerate loaded modules within processes. Also, a
malware could easily hook these user-mode APIs in order to
return manipulated results and essentially hide its malicious
processes and threads from enumeration.

123

132 E. U. Kumar

4.5 Enumeration using windows management
instrumentation

Windows management instrumentation (WMI) is Microsoft’s
implementation of Web-based enterprise management
(WBEM) and common information model (CIM) standards
from the distributed management task force (DMTF). It
extends the windows driver model (WDM) and provides for
uniform access of data from different management sources
while extending existing management protocols such as the
simple network management protocol (SNMP). WMI is
included since Windows 2000 and Windows XP and is avai-
lable as a redistributable for previous versions of Windows.
The WMI interface is based on component object model
(COM) technology and provides for process enumeration
functions. Sample code can be found in [8]. Again, a mal-
ware could hook the WMI or COM interfaces that service
these enumerations in order to hide its malicious processes.

4.6 Enumerating processes on a terminal server

In order to enumerate processes on a terminal server, we
can use the functions exported by Wtsapi32.dll. The WTSE-
numerateProcesses function retrieves information about the
active processes on a specified terminal server. This func-
tion requires a handle to a terminal server which can be
opened with the WTSOpenServer function. This function
requires a pointer to a null-terminated string specifying the
NetBIOS name of the terminal server. The WTSCloseSer-
ver function is used to close the handle. If the application
enumerating the processes is running on the terminal server
itself then no handle need be opened, rather, the constant
WTS_CURRENT_SERVER_HANDLE can be used. The
enumeration function returns a pointer to an array of
WTS_PROCESS_INFO structures along with a count of the
number of structures. Each structure in the array contains
information about an active process on the specified terminal
server. To free the returned buffer, we can call the WTSFree-
Memory function. The structures consist of members such as
process-id and process-name (which is the name of execu-
table file associated with the process).

4.7 Enumerating services

Malware could install malicious system services (such as a
kernel driver or file system driver or even a Win32 process
service) in order to operate in an escalated state. It is hence
imperative to have an understanding of what services are cur-
rently active in memory and be able to enumerate them. We
can use the EnumServicesStatusEx function in order to enu-
merate services within the specified service control manager
database. This function requires a valid handle to the service

control manager database, which can be obtained by using
the OpenSCManager function with the SC_MANAGER_
ENUMERATE_SERVICE access rights. In order to retrieve
the name and service status information for each service,
SC_ENUM_PROCESS_INFO is to be provided as another
parameter. We can use this function to enumerate Win32 pro-
cess services and kernel or file system driver services that are
active. This function needs to be called twice, once in order
to find the number of bytes to allocate for an output buffer
(by checking for the return code of ERROR_MORE_DATA)
and the second time to retrieve enumerated services informa-
tion after allocating the required buffer size. The output buffer
receives an array of ENUM_SERVICE_STATUS_PROCESS
structures where each structure represents a service on the
system. This structure contains information about the name
of the service and another structure called SERVICE_
STATUS_PROCESS that holds status information about the
service. From this structure we can obtain information such
as the type of the service, the current state of the service and
more importantly the process-id of the service. Using this
process-id we can obtain a handle to the process via Open-
Process that can be used to scan its memory image. Also,
we can obtain the complete path and name of the associated
file on disk by passing this handle to GetModuleFileNameEx
function.

4.8 Enumerating 16-bit applications

On Windows NT based operating systems, 16-bit applica-
tions are run within an instance of NTVDM (NT Virtual DOS
Machine, which is the Win16 subsystem). The NTVDM sub-
system provides a set of services that allow a Win32 process
to debug 16-bit Windows applications. This is provided via
vdmdbg.dll. If any of the previous documented methods were
to be used to enumerate processes (as PSAPI or Tool Help
library), we would still not be able to enumerate 16-bit appli-
cations but rather only instances of ntvdm.exe. The system
DLL vdmdbg.dll provides functions to enumerate all 16-bit
processes running under NTVDM. The primary function for
enumeration is VDMEnumProcessWOW, which will call a
callback function in the calling application for every process
on the machine which is a Win16 subsystem, i.e. an instance
of ntvdm.exe. For each instance of ntvdm.exe, we have to
enumerate the 16-bit processes running within them, which
are referred to as tasks. For this, we use the VDMEnum-
TaskWOWEx function which also calls a callback function
in the calling application for every task within each instance
of ntvdm.exe. In this callback, we receive the module name
and the full path of the executable which is running the task
(16-bit application) [20]. Note that the 16-bit subsystem has
been removed in Windows Vista.

123

User-mode memory scanning on 32-bit & 64-bit windows 133

4.9 Enumerating process modules using
NtQueryInformationProcess native API

The native API NtQueryInformationProcess retrieves infor-
mation about a specified process. The prototype for this func-
tion is as shown:

NTSTATUS NTAPI NtQueryInformationProcess (
__in HANDLE ProcessHandle,
__in PROCESS_INFORMATION_CLASS ProcessInfor-

mationClass,
__out PVOID ProcessInformation,
__in ULONG ProcessInformationLength,
__out_opt PULONG ReturnLength);
This function requires a handle to the process, which can

be obtained via the OpenProcess function if a valid
process-id is available. ProcessInformationClass selects the
sub-function to be called i.e. the type of process informa-
tion to retrieve. It could be any of ProcessBasicInformation
(0), ProcessDebugPort (7), ProcessWow64Information (26),
and ProcessImageFileName (27). ProcessInformation is a
pointer to a buffer that receives the requested information,
and ProcessInformationLength is the size of the receiving
buffer. The optional ReturnLength argument indicates how
many bytes were copied to the buffer. The required size of the
buffer depends on the sub-function being called and hence
requires us to call NtQueryInformationProcess within a loop
and check for the return code STATUS_INFO_LENGTH_
MISMATCH, while dynamically increasing the buffer size
until a return code of STATUS_SUCCESS is received.

ProcessDebugPort retrieves the port number of the debug-
ger for the process. A nonzero value indicates that the process
is being run under the control of a ring 3 debugger. This infor-
mation can also be obtained using the CheckRemoteDebug-
gerPresent (for a remote process) or IsDebuggerPresent (for
the current process) functions. ProcessWow64Information
determines whether the process is running within a WoW64
environment. This information can also be obtained using the
IsWow64Process function. ProcessImageFileName retrieves
the name of the file on disk associate with the process. The
most important sub-function we are interested in is Process-
BasicInformation. This sub-function retrieves a pointer to the
PROCESS_BASIC_INFORMATION structure. This struc-
ture has few important members such as the process-id of
current process, process-id of parent process, and pointer to
the base address of current processes’ process environment
block (PEB).

Each process has a PEB. Any thread within the process
can access the process’ PEB or an injected thread within the
process can access it as well. The PEB structure contains
process information. Note that the PEB structure is different
on 64-bit Windows (i.e. fields are of different sizes). Three
important members of the PEB structure are:

• A pointer to the PEB_LDR_DATA structure that contains
information about the loaded modules for the process.

• A pointer to the RTL_USER_PROCESS_PARA-
METERS structure that contains process parameter infor-
mation
such as the command line and the path of the image file
for the process.

• A pointer to a pointer that lists all the heaps within the
process.

An important member of PEB_LDR_DATA structure is ano-
ther structure of type LIST_ENTRY which basically is the
head of a doubly linked list that contains the loaded modules
for the process. Each item in the list is a pointer to an
LDR_DATA_TABLE_ENTRY structure which corresponds
to each loaded module. This structure holds the base address
of the loaded module and the full path of associate file on
disk. Along with this information, the LDR_DATA_TABLE_
ENTRY structure contains pointers to lists such as:
InLoadOrderModuleList, InMemoryOrderModuleList, and
InInitializationOrderModuleList. The first two lists contain
the application itself as the first module, followed by needed
modules (DLLs). The last list contains ntdll.dll as the first
module followed by kernel32.dll. Malware sometimes enu-
merate this list in order to get the base address of ntdll.dll
and resolve addresses to native APIs in order to hook them,
or get the base address of kernel32.dll and resolve addresses
to GetProcAddress and LoadLibrary in order to dynamically
load (import) and inject their own DLL (code). Again, the
use of native APIs is not recommended by Microsoft since
associated internal structures could change from one version
of Windows to other.

4.10 From TEB to PEB using NtQueryInformationThread
native API

The native API NtQueryInformationThread retrieves infor-
mation about a specified thread. The prototype for this func-
tion is as shown:

NTSTATUS NTAPI NtQueryInformationThread (
__in HANDLE ThreadHandle,
__in THREAD_INFORMATION_CLASS ThreadInfor-

mationClass,
__inout PVOID ThreadInformation,
__in ULONG ThreadInformationLength,
__out_opt PULONG ReturnLength);
This function requires a handle to the thread, which can be

obtained via the OpenThread function if a valid thread-id is
available. ThreadInformationClass selects the sub-function
to be called i.e. the type of thread information to retrieve. It
could be any of ThreadBasicInformation or ThreadQuery-
SetWin32StartAddress. ThreadInformation is a pointer to a

123

134 E. U. Kumar

buffer that receives the requested information, and ThreadIn-
formationLength is the size of the receiving buffer. The optio-
nal ReturnLength argument indicates how many bytes were
copied to the buffer. The required size of the buffer depends
on the sub-function being called and hence requires us to call
NtQueryInformationThread within a loop and check for the
return code STATUS_INFO_LENGTH_MISMATCH, while
dynamically increasing the buffer size until a return code of
STATUS_SUCCESS is received.

ThreadQuerySetWin32StartAddress retrieves the start
address of the thread. On versions of Windows prior to Win-
dows Vista, the returned start address is only reliable before
the thread starts running. The sub-function we are interes-
ted in is ThreadBasicInformation, which retrieves a pointer
to the THREAD_BASIC_INFORMATION structure. This
structure contains information such as the thread’s base prio-
rity, its exit status, and a pointer to the CLIENT_ID structure
that contains the unique thread-id and process-id (to which
the current thread belongs). The most important member of
the THREAD_BASIC_INFORMATION structure is a poin-
ter to the base address of the thread’s TEB (Thread Envi-
ronment Block). The base address of the TEB can also be
obtained using the NtCurrentTeb native API call.

Each thread has a TEB. The TEB structure contains thread
information. Some of its important members are: a pointer to
the base address of the thread’s TLS (Thread Local Storage)
or TLS array, a pointer to the SDT (Service Descriptor Table)
which in turn points to the SSDT (System Service Dispatcher
Table), and a pointer to the PEB structure of the process that it
belongs to. The PEB pointer is typically located at offset 0x30
inside the current TEB and this location has been stable across
32-bit Windows NT4, 2000, XP, and 2003. The SDT pointer
is typically located at offset 0xDC on 32-bit Windows 2000
and at offset 0xE0 on 32-bit Windows XP, inside the current
TEB. The FS segment register is always set such that the
address FS:0 points to the TEB of the thread being executed.
At offset 0x18 inside the current TEB is a pointer to self (i.e.
pointer to the first thread’s TEB). Hence the following are
valid ways of obtaining the base addresses of TEB and PEB:

assume fs:nothing
mov eax, fs:[18h] ; get self pointer

from TEB
mov ebx, fs:[30h] ; get pointer to PEB
mov ebx,dword ptr [eax+0x30] ; another

way of getting pointer to PEB

Typically on a 32-bit Windows NT based operating system,
the TEB is located at 0x7FFDE000 and the PEB is located at
0x7FFDF000. Each new thread’s TEB is assigned an address
growing towards 0x00000000. If a thread exits and a new
thread is created then it will get the address of the previous
thread’s TEB. It is not advisable to rely on such hard-coded

values since the internal structures and offsets could change
from one version of Windows to the other.

We can obtain the base value of the FS segment regis-
ter using documented Win32 API calls. For this, we make
use of the GetThreadContext and GetThreadSelectorEntry
functions. Before we call GetThreadContext, we have to
suspend the thread using the SuspendThread function and
then set the context-flags in the CONTEXT structure that
specifies which portions of the thread context are retrie-
ved. In order to retrieve registers context, we set the flags
to CONTEXT_FULL | CONTEXT_DEBUG_REGISTERS.
Also, the function requires a handle to the thread with
THREAD_GET_CONTEXT access rights. A 64-bit appli-
cation can retrieve the context of a WoW64 thread using
the Wow64GetThreadContext function and would additio-
nally require THREAD_QUERY_INFORMATION access
rights. The returned CONTEXT structure from GetThread-
Context is then passed to the GetThreadSelectorEntry func-
tion (which is only functional on x86-based systems). This
function retrieves a descriptor table entry for the specified
selector and thread. The selector we specify here is the FS
segment register. The returned descriptor table entry is a
pointer to the LDT_ENTRY structure (which is again valid
only on x86-based systems). This information can be used to
convert a segment-relative address to a linear virtual address,
so it can be passed on to the ReadProcessMemory function.
ReadProcessMemory only uses linear virtual addresses. In
order to calculate the base address of a segment (in our case
it being the FS register), we need to combine the following
members of the LDT_ENTRY structure: BaseLow—the low-
order part of the base address of the segment, BaseMid—
middle bits (16–23) of the base address of the segment, and
BaseHi—high bits (24–31) of the base address of the seg-
ment.

With the base value of FS segment register; we can now
use ReadProcessMemory to read the TEB and PEB of the
specified process.

4.11 Enumerating process modules and heaps using native
debug APIs

In order to enumerate loaded modules within a specific pro-
cess, we need to first obtain its process-id. This can be done
by using any of the above discussed methods of enumera-
ting processes. We can then make use of the native debug
APIs exported by ntdll.dll in order to enumerate modules
within that process. This involves first creating a debug buf-
fer using the RtlCreateQueryDebugBuffer function and then
calling the RtlQueryProcessDebugInformation function to
populate the debug buffer with module information. This
function requires a “debug information class mask” to be
passed in, which in this case would be PDI_MODULES.
The debug buffer is populated with structures that contain

123

User-mode memory scanning on 32-bit & 64-bit windows 135

information about a module such as the base address, image-
size and full path to associated file on disk. The debug buffer
can be freed using the RtlDestroyQueryDebugBuffer func-
tion. Sample code to enumerate modules using this can be
found in [31]. Note that RtlQueryProcessDebugInformation
creates a remote thread in the process to examine and return
a read-only snapshot. In order to enumerate heaps of a spe-
cific process, the RtlQueryProcessDebugInformation func-
tion is called with “debug information class mask” set to
PDI_HEAPS | PDI_HEAP_BLOCKS. In this case, the debug
buffer is filled with structures that contain information such
as the base address of the node, the allocated and committed
sizes of the node, number of blocks in the node, and an array
of pointers to HEAP_BLOCK structures representing each
block in the node. Each of these HEAP_BLOCK structures
can be traversed in order to obtain each heap’s base address
and size. Sample code to enumerate heaps using this can be
found at [28].

Note that RtlQueryProcessDebugInformation creates a
remote thread in the process to examine and returns a read-
only snapshot.

4.12 Enumeration using direct read of kernel memory from
user-mode

This method is an undocumented technique (or rather a hack)
to directly access kernel memory from a user-mode appli-
cation. This is done by exploiting read access and gran-
ting write access to the \\Device\\PhysicalMemory section
object. A section object, also called a file-mapping object,
represents a block of memory that two or more processes can
share. Section objects can be mapped to a page file or some
other on-disk file. As far as we know, the first use of this
section object for viewing physical memory was by Mark
Russinovich when he created the physical memory viewer
tool called Physmem [21]. Since then, other proof-of-concept
tools and techniques have emerged that take advantage of the
\\Device\\PhysicalMemory section object in order to read
and write parts of kernel memory directly from user-mode.
Few examples are listed below:

• A tool called Kmem that shows reading kernel memory
from user-mode [19].

• A technique to set up a call gate descriptor in the GDT
(Global Descriptor Table, which exists in kernel-mode),
by opening the \\Device\PhysicalMemory section object
using NtOpenSection and then mapping it using NtMap-
ViewOfSecton [3].

• Techniques to read and write kernel memory from user-
mode [4].

• Technique to hide processes by directly manipulating ker-
nel memory [1].

• Technique to modify SSDT from user-mode by writing
to kernel memory [29].

The above methods require cryptic techniques to obtain
addresses to un-exported kernel objects and conversion of
virtual addresses to actual physical addresses in memory.
We could use this undocumented method to read the EPRO-
CESS structure from kernel memory in order to enumerate
processes and loaded modules.

Starting with Microsoft Windows Server 2003 Service
Pack 1 (SP1), which also includes Windows XP x64 SP1,
user-mode applications cannot access \\Device\\Physical
Memory directly and can only access it if a kernel-mode dri-
ver is used to pass a handle to the application. This is done by
a call to MmMapViewOf Section function from a kernel-mode
driver. But again this protection was bypassed [11]. Starting
with Windows Vista, access to \\Device\\PhysicalMemory
from user-mode has been completely removed.

4.13 Enumerating open file handles within a process

Sometimes it is imperative to enumerate open handles within
a process in order to search for a specific type of handle. For
example, the infamous W32/Sober worm opens a “file” type
handle to self when in memory, preventing any other exter-
nal program (such as an anti-malware scanner) from acces-
sing its malicious image on disk. In this case, the memory
scanner could enumerate all open “file” type handles within
the process and close any those are open to self, enabling
access to the malicious file on disk. We can enumerate open
handles (of all types) system wide by using the native API
NtQuerySystemInformation with the sub-function System-
HandleInformation. The function returns a structure called
SYSTEM_HANDLE_INFORMATIOM. Since the size of
the output buffer that would hold SYSTEM_HANDLE_
INFORMATIOM structure depends on the number of open
handles in the system which varies dynamically, this requires
us to call NtQuerySystemInformation within a loop and check
for the return code STATUS_INFO_LENGTH_MISMATCH,
while dynamically increasing the buffer size until a return
code of STATUS_SUCCESS is received. The SYSTEM_
HANDLE_INFORMATIOM structure contains an array of
structures each of type SYSTEM_HANDLE and the num-
ber of such structures. Each SYSTEM_HANDLE structure
represents an open handle within the system. This structure
holds important information such as the process-id of the
process it is associated with and the ObjectType (which is
the type of handle and can be any of file, directory, symbolic
link, process, thread, token, device, etc.). For our purpose we
are interested in “file” type handles.

For each handle (say, h) associated with a process-id (say,
pid), we want to be able to gather information about the
handle (h) such as associated object name and object type.

123

136 E. U. Kumar

This can be done using the native API functions NtQueryIn-
formationFile and NtQueryObject. For this, we have to first
duplicate the handle (h) using the DuplicateHandle func-
tion. This function requires a handle to the process (with
process-id pid) containing the handle (h) to be duplicated.
For this, OpenProcess is used on pid with PROCESS_DUP_
HANDLE access rights. The handle (h) is then duplica-
ted with DUPLICATE_SAME_ACCESS to obtain a handle
object (say hobj). Note that sometimes querying handle
objects could lead to a deadlock situation causing the appli-
cation to hang indefinitely. This can be avoided by creating a
new thread (using CreateThread) and waiting for it to com-
plete in the parent thread (using WaitForSingleObjectEx).
The new thread could point to code that calls NtQueryIn-
formationFile on the handle object (hobj), by passing the
sub-function FileNameInformation. This test helps us avoid
querying objects that have the potential to cause deadlocks.
If the child-thread returns back to the parent before the time-
out, then the handle object can be queried safely. Alternately,
if the time-out is reached, which means the child thread is
hung; in which case we terminate the hung child thread and
infer that querying the handle object would lead to a deadlock
situation causing the application to hang indefinitely. If this
test were to finish successfully, we can then call NtQueryOb-
ject on the handle object. In order to obtain object name, the
sub-function ObjectNameInformation is used. This returns a
Unicode string of the object name which is in device form
(eg: \\Device\\HardDisk1\). In order to obtain object type,
we call NtQueryObject with the sub-function ObjectTypeIn-
formation. Note that the size of the output buffer that would
hold the results depends on the sub-function being passed and
hence requires us to call NtQueryObject within a loop and
dynamically incrementing the buffer size while checking for
the return code of STATUS_INFO_LENGTH_MISMATCH,
until a STATUS_SUCCESS is received. The object name and
object type information can be used to check if a particular
process has an open file type handle to self (as is the case with
W32/Sober). When such a self file handle is found, it could be
closed using the DuplicateHandle function, passing DUPLI-
CATE_CLOSE_SOURCE as one of its parameters. Closing
the self file handle in W32/Sober allows read access to its
image on disk allowing complete removal of the malware.

4.13.1 Protected processes

The Microsoft Windows Vista operating system introduced a
new type of process known as a protected process in order to
enhance support for Digital Rights Management functiona-
lity in Windows Vista. Although any application can attempt
to create a protected process, the operating system requires
that these processes be specially signed by Microsoft. There
are two known protected processes on Vista—audiodg.exe
and mfpmp.exe. A typical process cannot perform the fol-

lowing operations such as, inject a thread, access virtual
address space, debug, or duplicate a handle on a protected
process, nor can it get/set context information or imperso-
nate any thread belonging to the protected process. Also,
only the following access rights are allowed to be obtained for
a protected process: PROCESS_QUERY_LIMITED_
INFORMATION and PROCESS_TERMINATE, while the
following access rights are allowed to be obtained for any
thread of the protected process, THREAD_QUERY_
LIMITED_INFORMATION, THREAD_SET_LIMITED_
INFORMATION, and THREAD_SUSPEND_RESUME.
Except for the above privileges, no other privileges can be
obtained for a protected process or thread, even if SeDebug-
Privilege is enabled. These restrictions can be circumvented
by installing a kernel-mode component in order to access
the memory of a protected process. A proof-of-concept tool
has already been written (that uses a kernel-mode driver) to
demonstrate “un-protecting” a protected process, and make
any process “protected” [12]. This shows that malware
authors too could use kernel components and create mali-
cious protected processes. A user-mode memory scanner
would be unable to scan the virtual address space of such
a process. The scanner could still enumerate all protected
processes and scan the associated files on disk. If an infec-
tion is found, then the protected process in memory can still
be terminated or its threads suspended.

4.13.2 Terminating malicious processes

In order to terminate malicious processes it is best to first
acquire the SeDebugPrivilege so that a handle can be acqui-
red to the target process regardless of the security descrip-
tor assigned to it [17]. The handle can be obtained (using
OpenProcess) with the terminate access right (PROCESS_
TERMINATE) or any access right (PROCESS_ALL_
ACCESS). We can then use any or all of the following
methods in order to terminate malicious processes and
threads [5]:

• Use the TerminateProcess function (exported by
kernel32.dll). This function unconditionally causes a pro-
cess to exit. All of the object handles opened by the pro-
cess are closed and all threads belonging to the process
terminate their execution, but DLLs attached to the pro-
cess are not notified that the process is terminating. Also,
terminating a process does not cause child processes to
be terminated, nor does it necessarily remove the process
object from the system. A process object is deleted when
the last handle to the process is closed.

• Use the native API function NtTerminateProcess (expor-
ted by ntdll.dll).

• Use the EndTask function (exported by user32.dll). This
works only if the target process has at least one window.

123

User-mode memory scanning on 32-bit & 64-bit windows 137

• Send the WM_CLOSE message to all windows in the
target process using the SendMessage function (exported
by user32.dll). This works only if the target process has at
least one window and it doesn’t handle the WM_CLOSE
message.

• Send the WM_QUIT message to all windows in the target
process again using the SendMessage function. Above
mentioned restrictions apply.

• Send the SC_CLOSE system message to all windows in
the target process again using the SendMessage function.
Above mentioned restrictions apply.

• Enumerate all threads in the target process (using any of
the discussed methods in previous sections) and termi-
nate them individually using the TerminateThread func-
tion (exported by kernel32.dll). This requires obtaining
a handle to each thread by using the OpenThread func-
tion with THREAD_TERMINATE or THREAD_ALL_
ACCESS access rights.

• Enumerate all threads in the target process and terminate
them individually using the native API function NtTermi-
nateThread (exported by ntdll.dll).

• Enumerate all threads in the target process and suspend
them, either using SuspendThread (exported by
kernel32.dll) or NtSuspendThread (exported by ntdll.dll).
Then use the SetThreadContext function (exported by ker-
nel32.dll) and modify the EIP register (instruction
pointer) of each to point to the ExitProcess function in ker-
nel32.dll. Then resume each thread. This again requires
obtaining a handle to each thread by using the Open-
Thread function with THREAD_SUSPEND_RESUME
and THREAD_SET_CONTEXT access rights or
THREAD_ALL_ACCESS access right.

• Create a new thread (as suspended) in the context of the
target process using the CreateRemoteThread function
(exported by kernel32.dll) with its start address pointing
to ExitProcess function in kernel32.dll, and then resume
the remote thread.

• Attach to the target process as a debugger by using the
DebugActiveProcess function (exported by kernel32.dll)
and simply terminate. This causes the process being
debugged (i.e. the target process) to terminate as well.

• Obtain a handle to the target process and pass it to the
DebugBreakProcess function causing the target process
to terminate because of an un-handled breakpoint excep-
tion.

• In order to terminate 16-bit applications (or tasks) running
within ntvdm.exe, we can use the VDMTerminateTask-
WOW function (exported by vdmdbg.dll), which requires
the process-id of the ntvdm.exe instance and the 16-bit
task-id.

In order to terminate all child processes (i.e. spawned pro-
cesses) of a malicious process, we need to establish

parent-child relationships and obtain process-ids of all child
processes. For this, we can use the following two techniques:

• Enumerate all processes using NtQuerySystemInforma-
tion and then use the InheritedFromProcessId informa-
tion to enumerate all child process-ids.

• Enumerate all processes using CreateToolhelp32
Snapshot, Process32First and Process32Next. Then use
the th32ParentProcessID information to enumerate all
child process IDs.

If all attempts to terminate a malicious process fail, because
it may be monitored and protected by some kernel-mode
driver, or if user-mode APIs and native APIs related to pro-
cess termination have been hooked by the malware, then we
may at least want to suspend it in order to inhibit its activi-
ties. Another case would be where a system process (such as
explorer.exe, winlogon.exe, csrss.exe, smss.exe) that should
not be terminated, is found to be infected (say with a mali-
cious injected DLL). In this case as well, we would want to
simply suspend the process (although explorer.exe and win-
logon.exe should not be suspended anyway in order for the
computer to be functional). In order to suspend the process we
could use the native API function NtSuspendProcess (expor-
ted by ntdll.dll). Another way is to enumerate all threads
of the target process and suspend them individually using
the SuspendThread function (exported by kernel32.dll). Suf-
ficient access rights are to be granted when handles to the
threads and process are obtained.

If all attempts to terminate and suspend a malicious pro-
cess fail, we could also consider forcing it to crash. This
must be approached with caution since it could sometimes
lead to system instability, failure of other applications, or
system hang, if the malware is deeply injected in system pro-
cesses or has hooked system calls and tables. Two methods
to forcefully crashing the target process are [5]:

• Enumerate all commit memory pages of the target process
using the VirtualQueyEx function and then set the access
level for those memory pages to PAGE_NOACCESS
using the VirtualProtectEx function. This effectively pre-
vents all read, write and execute operations on those
pages, eventually forcing the target process to crash due
to its inability to execute code.

• Enumerate all commit memory pages of the target pro-
cess using the VirtualQueyEx function and then use the
WriteProcessMemory function to overwrite those pages
with junk data, eventually causing the target process to
crash due to attempting to execute invalid code.

Some of the system critical processes in memory should not
be suspended nor terminated in order to maintain system
stability and usability. Such system critical processes are:

123

138 E. U. Kumar

winlogon.exe, explorer.exe, services.exe, and csrss.exe. If any
of these processes are found to be infected in memory, then
either a reboot is required in safe mode preceded by a registry
cleaning routine in order to get rid of any malware that might
load on system reboot, or scanning from a clean OS loaded
from an alternate boot device.

If lsass.exe were found to be infected in memory (i.e. via
remote code/DLL injection), it is safe to suspend it in order
to disinfect the machine, provided we are not enumerating
any processes (or modules) by escalating to SeDebugPri-
vilege. This is because if lsass.exe were to be suspended
while we are still enumerating processes (or modules) would
cause the enumerating application to hang indefinitely. This
is because, when we try to escalate privileges, one of the
Win32 API function used is LookupPrivilegeValue which
basically uses the RPC server and lsass.exe to retrieve infor-
mation. If lsass.exe is suspended during this time, the appli-
cation will hang indefinitely for the service.

5 Summarizing user-mode memory scanning

The basic idea is to enumerate active memory components
visible from user-mode such as processes, services, loaded
modules, loaded drivers, etc. and scan the associated files on
disk. The actual memory image associated with each com-
ponent is scanned as well. The memory image of a process
is read by using a combination of VirtualQueryEx and Read-
ProcessMemory functions. VirtualQueryEx enumerates all
memory pages within the specified process and the informa-
tion is returned in a MEMORY_BASIC_INFORMATION
structure. This structure has information such as base address
and region size. The base address can correspond to any of the
loaded modules within the process. Base address + region
size will point to the next region of memory. When the “maxi-
mum application address” is reached, we have a count of the
number of memory pages for the process. Using this count
we could iterate to find total buffer size required to store
only “commit” pages (i.e. memory pages that have state as
MEM_COMMIT). We can then use ReadProcessMemory to
read each commit page and store it in a buffer. This buffer
can eventually be passed to the memory scanner.

This approach can be used to detect earlier versions of the
infamous Storm Trojan’s (a.k.a. Zelethan, Peacomm) injected
code into services.exe. The Trojan drops a malicious kernel-
mode driver that has an embedded payload (as an embedded
executable). The payload is injected from kernel space into
the user space of services.exe and scheduled for execution by
queuing an Asynchronous Procedure Call (APC) for it. Due
to this, there is no “visible” process executing the payload if
we were to use any of the enumeration techniques in order
to enumerate processes. Scanning the committed memory
pages of services.exe will reveal the injected code.

When an attempt to scan an associated file on disk for
a particular process fails due to the file not being present
on disk, this could imply that the file is hidden from Win-
dows API (using rootkit like techniques) or the file is deleted
from disk once it is loaded into memory. This was seen with
W32/OnlineGames.AYW which dropped a malicious kernel-
mode driver (detected as W32/SysTrojan.A) that existed on
disk only for a very brief instance, and was deleted by the
malware as soon as it was loaded as a service into memory.
This ensured that the malicious driver existed only in memory
and not on disk. On subsequent reboots, the malware would
re-create the malicious driver file on disk again for a brief
instance and delete it again once loaded in memory. In this
case, try to scan the memory image of the process in question.
Any failed attempt to suspend or terminate the malicious pro-
cess (because another malicious process in memory could be
protecting it) results in adding it to the “pending terminates
list”. This list is visited again after complete memory scan.
If we still fail to terminate or are only able to suspend the
malicious processes listed in the list, then the user is to be
notified of an un-resolved infection.

When an attempt to scan an associated file on disk for a
particular process fails due to access violation to open the file
for reading, this could imply that the file is locked by another
malicious process in memory or that the associated process
has an open handle to self. In this case, the file path is added
to a “pending scans list”. This list is visited after complete
memory scan in order to attempt to scan the file in question
again. If still read access to file is denied, and an open “file”
handle to self is found, then try to close such a handle, and
if successful, try to scan the file on disk again.

When the associated file on disk is scanned for a particular
process and is found to be clean, proceed to scan all loaded
modules by that process. If an infection pertaining to a loaded
module is found, instead of trying to terminate the process,
only try to suspend the process after making sure it is not
one of the critical system processes (such as winlogon.exe
or explorer.exe). If critical system processes are found to be
infected then the user is notified of un-resolved infections that
would require a reboot in safe mode (or booting into a clean
OS using alternate boot devices) and re-scanning of memory.
If both the associated file on disk and loaded modules are
found to be clean, then proceed to scan the memory image
of the process. This is important because a memory resident
malware could disinfect its associated files on disk on-access
(i.e. when opened for read by an external program) and re-
infect them back on close.

5.1 Scanning for hidden processes from user-mode

One of the most effective methods to scan for hidden pro-
cesses (that could be hidden via a kernel-mode driver) from
user-mode is to use the technique used by the BlackLight

123

User-mode memory scanning on 32-bit & 64-bit windows 139

rootkit detection tool [10]. It basically calls the OpenProcess
function on process-ids ranging from 0x00 to the maximum
allowed process-id of 0x4E1C, while keeping track of all suc-
cessful calls. A successful call to OpenProcess means that
process-id belongs to a valid process in memory. Then use
any of the high-level user-mode APIs to enumerate processes
(and process-ids), and compare this list with the previously
obtained list using OpenProcess. Any discrepancy denotes a
hidden process. Note that this technique too can be thwarted
by manipulating certain structures within the kernel [10].

Use all of the methods discussed before in order to enu-
merate processes and compare the results from each. If there
is any discrepancy in the results, then it denotes the compro-
mised state of a machine, i.e. some user-mode API or native
API has been hooked or some other technique has been used
to attempt to hide processes.

Another method would be to enumerate all open handles in
csrss.exe that are of type “process”. This is because csrss.exe
maintains process handles to all processes currently running
in memory. With this information we can determine all pro-
cess names and process-ids, which can then be compared with
enumerations obtained by other techniques (as described in
previous sections) in order to find any discrepancies.

There are also open handles of type “thread ” maintained
by csrss.exe for each running process in memory. Enumera-
ting the thread handles as well helps us determine the parent
of a thread, hence being able to determine all process-ids that
currently have any threads running in memory. This enume-
ration of process-ids can then be compared with enumera-
tions obtained by other techniques (as described in previous
sections) in order to find any discrepancies.

Using the native API NtQuerySystemInformation with the
sub-function SystemHandleInformation, we can enumerate
all open handles (of all types) on a system. The retrieved
information provides associated process-ids with each
handle. This enumeration of process-ids can then be com-
pared with enumerations obtained by other techniques (as
described in previous sections) in order to find any discre-
pancies.

If a malware were to hook all of the mentioned user-mode
APIs and native APIs used for enumerating memory objects,
in order to consistently return manipulated results, then these
techniques would fail to find the malicious hidden process.
There is also the possibility of false-positives with using the
combined data from multiple techniques. This could happen
if a process was already enumerated by a few techniques and
then exited while still being enumerated by other techniques.
Such type of situations must be handled gracefully.

5.2 Scanning for memory mapped files

File mapping is the association of a file’s contents with a
portion of the virtual address space of a process. It is an

efficient way for two or more processes on the same compu-
ter to share data, while providing synchronization between
the processes. This facilitates inter process communication
(IPC). Malicious processes could use file mapping in order
to communicate and share data from malicious files on disk.
Hence it is important for the memory scanner to enumerate
mapped files within the address space of each process. Whe-
never a process wants to map a file on disk, it first opens the
file by calling the CreateFile function. In order to ensure that
other processes do not write to the portion of the file that is
mapped, the process could open the file with exclusive access
by specifying zero in the fdwShareMode parameter of Crea-
teFile. The memory scanner could enumerate all open file
handles by a certain process by using the native API function,
NtQuerySystemInformation with SystemHandleInformation
and then using another native API function, NtQueryObject
to search for the object handle “file”. After enumerating all
open file handles, each associated file on disk could be scan-
ned for malicious content. If any such files are found, then the
associated file handles could be closed within the malicious
process accessing them.

6 Pros and cons of user-mode memory scanning

Due to the virtual memory address separation of user-mode
and kernel-mode, the kernel-mode address space is protec-
ted from read or writes access by any user-mode component
or thread. Whenever a user-mode API requests certain sys-
tem information, it is serviced via a kernel-mode service,
wherein, a context switch of the thread from user-mode to
kernel-mode happens. The desired information is retrieved
from various kernel structures or objects and transferred back
to the calling user-mode API. When in user-mode, the thread
context is switched back to user-mode (less privileged). Any
malware that is either using a kernel-mode component, or
operating fully in kernel-mode itself, has complete access to
all kernel structures as well as control transfers from user-
mode to kernel-mode. Hence, such malware could manipulate
the retrieved information before transferring it back to user-
mode consequently hiding its presence from the user-mode
memory scanner. Malware could also disallow termination
of malicious processes in memory and/or disallow deletion/
disinfection of malicious files on disk, by using kernel-mode
components. In order to combat such malware requires imple-
menting a kernel-mode memory scanner. In particular, user-
mode memory scan can be bypassed by hooking user-mode
APIs and/or native APIs, hooking of kernel structures such as
system service dispatch table (SSDT) or interrupt descriptor
table (IDT), import address table (IAT) & export address table
(EAT) hooking, SYSENTER hook, inline function hooks,
driver hooks (also called IRP—IO Request Packet hooks),
and hooking the memory manager. More advanced methods

123

140 E. U. Kumar

available to kernel malware are filter driver insertion and
DKOM (Direct Kernel Object Manipulation). All these tech-
niques are discussed in [15]. If the memory scanner were to
be implemented in kernel-mode, it is less susceptible to being
thwarted, as integrity of structures and APIs can be checked
or monitored.

A user-mode memory scanner also has limitations enfor-
ced by the operating system depending on the privileges of
the currently logged-on user running the application. If the
application were to be run by a limited user with no adminis-
trative privileges, it would fail to enumerate several system
processes and threads, as well as fail to read memory pages
of processes.

On the other hand, a kernel-mode memory scanner (imple-
mented as a kernel-mode driver) is complex to implement,
debug and deploy. Compatibility issues with different ver-
sions of Windows NT based operating systems need to be
taken into consideration as implementation details may signi-
ficantly vary. For example, the introduction of kernel patch
protection or “PatchGuard” in 64-bit versions of the Win-
dows OS, as well as several design features to enforce
security measures in Windows Vista [7], makes driver deve-
lopment for memory scanning quite tedious and complex [6].
Also, the stability of such a kernel-mode application depends
on a variety of factors such as software and/or hardware confi-
guration. Any faulty implementation could lead to system
wide crashes such as reboots, blue screen of death (BSoD),
or system freezes. Hence, extreme care must be taken while
implementing a kernel-mode memory scanner. Also note that
32-bit driver support has been removed in 64-bit Windows
Vista which would require a complete port of the memory
scanner if written as a 32-bit kernel-mode driver.

Although a user-mode memory scanner has its limitations,
it is much easier to implement, debug and deploy than its
kernel-mode counterpart. It can be reliably operated without
risk of causing a system wide crash. The worst case scenario
could only be a single application crash. Also, the compa-
tibility issues with different versions of Windows NT based
operating systems (such as Windows XP 64-bit, Windows
Vista 32-bit & 64-bit) can be easily overcome.

Both approaches have their pros and cons. In practice it
is best to implement a memory scanner in both user-mode
and kernel-mode. By comparing the results from both tech-
niques (a cross-view diff approach), one could reveal any
hidden process, files or registry entries determining the com-
promised state of a machine.

7 Conclusion

The essential components of a user-mode memory scanner
for Windows NT based operating systems were presented.
This involved enumerating a wide variety of active memory

components; such as processes, process heaps, threads, loa-
ded modules, loaded drivers, services, etc. The idea was to
rely on the abundance of redundant information available
via various internal structures active in memory, and extract
this information. This information can be queried to compare
results from different sources in order to detect any possible
system compromise. Techniques to terminate malicious pro-
cesses in memory and restoring read access to locked files on
disk were also discussed. The advantages and disadvantages
of implementing a memory scanner in user-mode were also
discussed.

References

1. 90210: Process Hide. http://vx.netlux.org/vx.php?id=ep12 (2004)
2. Barwise, M.: Quantity of malware booms. http://www.heise-

security.co.uk/news/101764 (2008)
3. Bassov, A.: Entering the kernel without a driver and getting

interrupt information from APIC. http://www.codeproject.
com/KB/system/soviet_kernel_hack.aspx?df=100&forumid=
209018&exp=0&select=1480766&tid=1480766 (2005)

4. Crazylord: Playing with Windows /dev/(k)mem. http://www.fsl.
cs.sunysb.edu/~dquigley/files/vista_security/p59-0x10_Playing_
with_Windows_dev(k)mem.txt (2002)

5. Diamond CS: Advanced Process Termination. http://www.
diamondcs.com.au/advancedseries/processkilltechniques.php
(2005)

6. Evers, J.: Microsoft coughs up Vista APIs.http://news.zdnet.co.uk/
security/0,1000000189,39285232,00.htm (2006)

7. Evers, J.: Windows PatchGuard hindering security. http://news.
zdnet.co.uk/software/0,1000000121,39280753,00.htm (2006)

8. Fedotov, A.: Enumerating Windows Processes. http://www.
alexfedotov.com/articles/enumproc.asp (2006)

9. Fedotov, A.: Processes and Threads Sample. http://www.
alexfedotov.com/samples/threads.asp (2006)

10. Silberman, P., C.H.A.O.S.: FUTo. http://www.uninformed.org/?v=
3&a=7&t=sumry (2005)

11. Ionescu, A.: Subverting Windows 2003 SP1 Kernel Integrity Pro-
tection. http://www.alex-ionescu.com/recon2k6.pdf (2006)

12. Ionescu, A.: Why protected processes are a bad idea. http://www.
alex-ionescu.com/?p=34 (2007)

13. Kath, R.: The Virtual-Memory Manager in Windows NT. http://
msdn2.microsoft.com/en-us/library/ms810616.aspx (1992)

14. Kerbs, B.: Microsoft releases Windows Malware stats. Retrieved 16
February, 2008, from http://blog.washingtonpost.com/securityfix/
2006/06/microsoft_releases_malware_sta.html (2006)

15. Kumar, E.: Battle with the Unseen—Understanding Rootkits
on Windows. http://ericuday.googlepages.com/EKumar_Rootkits.
pdf (2006)

16. Microsoft MSDN documentation: Memory Limits for Windows
Releases. http://msdn2.microsoft.com/en-us/library/aa366778.
aspx (2008)

17. Microsoft KB Article: How to Obtain a Handle to Any Process
with SeDebugPrivilege, Q131065. http://support.microsoft.com/
kb/131065 (2006)

18. Microsoft KB Article: Comparison of 32-bit and 64-bit memory
architecture. http://support.microsoft.com/?kbid=294418 (2007)

19. Nebbet, G.: Read kernel memory from user-mode using Kmem.
http://catch22.net/source/ (2004)

20. Restrepo, T.: Enumerating 16-bit Processes under WinNT. http://
www.winterdom.com/dev/ptk/16bitproc.html (1998)

123

http://vx.netlux.org/vx.php?id=ep12
http://www.heise-security.co.uk/news/101764
http://www.heise-security.co.uk/news/101764
http://www.codeproject.com/KB/system/soviet_kernel_hack.aspx?df=100&forumid=209018&exp=0&select=1480766&tid=1480766
http://www.codeproject.com/KB/system/soviet_kernel_hack.aspx?df=100&forumid=209018&exp=0&select=1480766&tid=1480766
http://www.codeproject.com/KB/system/soviet_kernel_hack.aspx?df=100&forumid=209018&exp=0&select=1480766&tid=1480766
http://www.fsl.cs.sunysb.edu/~dquigley/files/vista_security/p59-0x10_Playing_with_Windows_dev(k)mem.txt
http://www.fsl.cs.sunysb.edu/~dquigley/files/vista_security/p59-0x10_Playing_with_Windows_dev(k)mem.txt
http://www.fsl.cs.sunysb.edu/~dquigley/files/vista_security/p59-0x10_Playing_with_Windows_dev(k)mem.txt
http://www.diamondcs.com.au/advancedseries/processkilltechniques.php
http://www.diamondcs.com.au/advancedseries/processkilltechniques.php
http://news.zdnet.co.uk/security/0,1000000189,39285232,00.htm
http://news.zdnet.co.uk/security/0,1000000189,39285232,00.htm
http://news.zdnet.co.uk/software/0,1000000121,39280753,00.htm
http://news.zdnet.co.uk/software/0,1000000121,39280753,00.htm
http://www.alexfedotov.com/articles/enumproc.asp
http://www.alexfedotov.com/articles/enumproc.asp
http://www.alexfedotov.com/samples/threads.asp
http://www.alexfedotov.com/samples/threads.asp
http://www.uninformed.org/?v=3&a=7&t=sumry
http://www.uninformed.org/?v=3&a=7&t=sumry
http://www.alex-ionescu.com/recon2k6.pdf
http://www.alex-ionescu.com/?p=34
http://www.alex-ionescu.com/?p=34
http://msdn2.microsoft.com/en-us/library/ms810616.aspx
http://msdn2.microsoft.com/en-us/library/ms810616.aspx
http://blog.washingtonpost.com/securityfix/2006/06/microsoft_releases_malware_sta.html
http://blog.washingtonpost.com/securityfix/2006/06/microsoft_releases_malware_sta.html
http://ericuday.googlepages.com/EKumar_Rootkits.pdf
http://ericuday.googlepages.com/EKumar_Rootkits.pdf
http://msdn2.microsoft.com/en-us/library/aa366778.aspx
http://msdn2.microsoft.com/en-us/library/aa366778.aspx
http://support.microsoft.com/kb/131065
http://support.microsoft.com/kb/131065
http://support.microsoft.com/?kbid=294418
http://catch22.net/source/
http://www.winterdom.com/dev/ptk/16bitproc.html
http://www.winterdom.com/dev/ptk/16bitproc.html

User-mode memory scanning on 32-bit & 64-bit windows 141

21. Russinovich, M. (2006). NT’s “\dev\kmem\”. http://technet.
microsoft.com/en-us/sysinternals/bb897446.aspx

22. Russinovich, M., Solomon, D.: Virtual to Physical address
translation 32-bit and 64-bit (IA64 & x64), http://book.itzero.
com/read/microsoft/0507/microsoft.press.microsoft.windows.
internals.fourth.edition.dec.2004.internal.fixed.ebook-ddu_html/
0735619174/ch07lev1sec5.html (2004)

23. Sanders, B.: Address space implementations in various 64 bit pro-
cessors from Intel and AMD. http://members.shaw.ca/bsanders/
WindowsGeneralWeb/RAMVirtualMemoryPageFileEtc.htm
(2007)

24. Schreiber, S.: Interfacing the native API in Windows 2000. http://
www.informit.com/articles/article.aspx?p=22442&seqNum=5
(2001)

25. Skoudis, E.: 10 emerging malware trends for 2007. http://
searchfinancialsecurity.techtarget.com/tip/0,289483,sid185_
gci1294544,00.html (2007)

26. Solomon, D., Russinovich, M.: Microsoft® Windows® Internals.
Fourth Edition: Microsoft Windows Server™ 2003, Windows
XP, and Windows 2000, pp. 420–428. Microsoft Press. ISBN:
0735619174 (2004)

27. Ször, P.: Memory scanning under WinNT. http://www.peterszor.
com/memscannt.pdf (1999)

28. Talekar, N.: Faster Method to Enumerate Heaps on Windows.
http://securityxploded.com/enumheaps.php (2007)

29. Tan, C.: Defeating kernel native API hookers by direct Ser-
vice Dispatch Table restoration. http://www.security.org.sg/code/
sdtrestore.html (2004)

30. Viscarola, P.: Nt vs. Zw—Clearing confusion on the native API.
http://www.osronline.com/article.cfm?id=257 (2003)

31. Vizjereij, X.: Module walker. http://www.runeforge.net/node/142
(2007)

123

http://technet.microsoft.com/en-us/sysinternals/bb897446.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897446.aspx
http://book.itzero.com/read/microsoft/0507/microsoft.press.microsoft.windows.internals.fourth.edition.dec.2004.internal.fixed.ebook-ddu_html/0735619174/ch07lev1sec5.html
http://book.itzero.com/read/microsoft/0507/microsoft.press.microsoft.windows.internals.fourth.edition.dec.2004.internal.fixed.ebook-ddu_html/0735619174/ch07lev1sec5.html
http://book.itzero.com/read/microsoft/0507/microsoft.press.microsoft.windows.internals.fourth.edition.dec.2004.internal.fixed.ebook-ddu_html/0735619174/ch07lev1sec5.html
http://book.itzero.com/read/microsoft/0507/microsoft.press.microsoft.windows.internals.fourth.edition.dec.2004.internal.fixed.ebook-ddu_html/0735619174/ch07lev1sec5.html
http://members.shaw.ca/bsanders/WindowsGeneralWeb/RAMVirtualMemoryPageFileEtc.htm
http://members.shaw.ca/bsanders/WindowsGeneralWeb/RAMVirtualMemoryPageFileEtc.htm
http://www.informit.com/articles/article.aspx?p=22442&seqNum=5
http://www.informit.com/articles/article.aspx?p=22442&seqNum=5
http://searchfinancialsecurity.techtarget.com/tip/0,289483,sid185_gci1294544,00.html
http://searchfinancialsecurity.techtarget.com/tip/0,289483,sid185_gci1294544,00.html
http://searchfinancialsecurity.techtarget.com/tip/0,289483,sid185_gci1294544,00.html
http://www.peterszor.com/memscannt.pdf
http://www.peterszor.com/memscannt.pdf
http://securityxploded.com/enumheaps.php
http://www.security.org.sg/code/sdtrestore.html
http://www.security.org.sg/code/sdtrestore.html
http://www.osronline.com/article.cfm?id=257
http://www.runeforge.net/node/142

	User-mode memory scanning on 32-bit & 64-bit windows
	Abstract
	1 Introduction
	2 Related work
	3 Background: Windows NT based operating systems
	3.1 Processes and threads
	3.2 Separation of kernel-mode and user-mode
	3.3 Virtual memory
	3.3.1 Extended virtual addressing for x86 (32-bit addressing mode)
	3.3.2 Memory management on 32-bit and 64-bit Windows

	4 Enumerating objects in memory
	4.1 Enumeration using NTQuerySystemInformation native API
	4.2 Enumeration using PSAPI functions
	4.3 Enumeration using tool help library
	4.4 Enumeration using performance counters
	4.5 Enumeration using windows management instrumentation
	4.6 Enumerating processes on a terminal server
	4.7 Enumerating services
	4.8 Enumerating 16-bit applications
	4.9 Enumerating process modules using NtQueryInformationProcess native API
	4.10 From TEB to PEB using NtQueryInformationThread native API
	4.11 Enumerating process modules and heaps using native debug APIs
	4.12 Enumeration using direct read of kernel memory from user-mode
	4.13 Enumerating open file handles within a process
	4.13.1 Protected processes
	4.13.2 Terminating malicious processes

	5 Summarizing user-mode memory scanning
	5.1 Scanning for hidden processes from user-mode
	5.2 Scanning for memory mapped files

	6 Pros and cons of user-mode memory scanning
	7 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

